671 research outputs found

    The dynamics of Machiavellian intelligence

    Full text link
    The "Machiavellian intelligence" hypothesis (or the "social brain" hypothesis) posits that large brains and distinctive cognitive abilities of humans have evolved via intense social competition in which social competitors developed increasingly sophisticated "Machiavellian" strategies as a means to achieve higher social and reproductive success. Here we build a mathematical model aiming to explore this hypothesis. In the model, genes control brains which invent and learn strategies (memes) which are used by males to gain advantage in competition for mates. We show that the dynamics of intelligence has three distinct phases. During the dormant phase only newly invented memes are present in the population. During the cognitive explosion phase the population's meme count and the learning ability, cerebral capacity (controlling the number of different memes that the brain can learn and use), and Machiavellian fitness of individuals increase in a runaway fashion. During the saturation phase natural selection resulting from the costs of having large brains checks further increases in cognitive abilities. Overall, our results suggest that the mechanisms underlying the "Machiavellian intelligence" hypothesis can indeed result in the evolution of significant cognitive abilities on the time scale of 10 to 20 thousand generations. We show that cerebral capacity evolves faster and to a larger degree than learning ability. Our model suggests that there may be a tendency toward a reduction in cognitive abilities (driven by the costs of having a large brain) as the reproductive advantage of having a large brain decreases and the exposure to memes increases in modern societies.Comment: A revised version has been published by PNA

    Effects of Epistasis and Pleiotropy on Fitness Landscapes

    Full text link
    The factors that influence genetic architecture shape the structure of the fitness landscape, and therefore play a large role in the evolutionary dynamics. Here the NK model is used to investigate how epistasis and pleiotropy -- key components of genetic architecture -- affect the structure of the fitness landscape, and how they affect the ability of evolving populations to adapt despite the difficulty of crossing valleys present in rugged landscapes. Populations are seen to make use of epistatic interactions and pleiotropy to attain higher fitness, and are not inhibited by the fact that valleys have to be crossed to reach peaks of higher fitness.Comment: 10 pages, 6 figures. To appear in "Origin of Life and Evolutionary Mechanisms" (P. Pontarotti, ed.). Evolutionary Biology: 16th Meeting 2012, Springer-Verla

    Evolutionary dynamics on strongly correlated fitness landscapes

    Full text link
    We study the evolutionary dynamics of a maladapted population of self-replicating sequences on strongly correlated fitness landscapes. Each sequence is assumed to be composed of blocks of equal length and its fitness is given by a linear combination of four independent block fitnesses. A mutation affects the fitness contribution of a single block leaving the other blocks unchanged and hence inducing correlations between the parent and mutant fitness. On such strongly correlated fitness landscapes, we calculate the dynamical properties like the number of jumps in the most populated sequence and the temporal distribution of the last jump which is shown to exhibit a inverse square dependence as in evolution on uncorrelated fitness landscapes. We also obtain exact results for the distribution of records and extremes for correlated random variables

    Cooperation, social norm internalization, and hierarchical societies

    Get PDF
    Many animal and human societies exhibit hierarchical structures with different degrees of steepness. Some of these societies also show cooperative behavior, where cooperation means working together for a common benefit. However, there is an increasing evidence that rigidly enforced hierarchies lead to a decrease of cooperation in both human and non-human primates. In this work, we address this issue by means of an evolutionary agent-based model that incorporates fights as social interactions governing a dynamic ranking, communal work to produce a public good, and norm internalization, i.e. a process where acting according to a norm becomes a goal in itself. Our model also includes the perception of how much the individual is going to retain from her cooperative behavior in future interactions. The predictions of the model resemble the principal characteristics of human societies. When ranking is unconstrained, we observe a high concentration of agents in low scores, while a few ones climb up the social hierarchy and exploit the rest, with no norm internalization. If ranking is constrained, thus leading to bounded score differences between agents, individual positions in the ranking change more, and the typical structure shows a division of the society in upper and lower classes. In this case, we observe that there is a significant degree of norm internalization, supporting large fractions of the population cooperating in spite of the rank differences. Our main results are robust with respect to the model parameters and to the type of rank constraint. We thus provide a mechanism that can explain how hierarchy arises in initially egalitarian societies while keeping a large degree of cooperation

    Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution

    Full text link
    We compare and contrast the long-time dynamical properties of two individual-based models of biological coevolution. Selection occurs via multispecies, stochastic population dynamics with reproduction probabilities that depend nonlinearly on the population densities of all species resident in the community. New species are introduced through mutation. Both models are amenable to exact linear stability analysis, and we compare the analytic results with large-scale kinetic Monte Carlo simulations, obtaining the population size as a function of an average interspecies interaction strength. Over time, the models self-optimize through mutation and selection to approximately maximize a community fitness function, subject only to constraints internal to the particular model. If the interspecies interactions are randomly distributed on an interval including positive values, the system evolves toward self-sustaining, mutualistic communities. In contrast, for the predator-prey case the matrix of interactions is antisymmetric, and a nonzero population size must be sustained by an external resource. Time series of the diversity and population size for both models show approximate 1/f noise and power-law distributions for the lifetimes of communities and species. For the mutualistic model, these two lifetime distributions have the same exponent, while their exponents are different for the predator-prey model. The difference is probably due to greater resilience toward mass extinctions in the food-web like communities produced by the predator-prey model.Comment: 26 pages, 12 figures. Discussion of early-time dynamics added. J. Math. Biol., in pres

    20 questions on Adaptive Dynamics

    Get PDF
    Abstract Adaptive Dynamics is an approach to studying evolutionary change when fitness is density or frequency dependent. Modern papers identifying themselves as using this approach first appeared in the 1990s, and have greatly increased up to the present. However, because of the rather technical nature of many of the papers, the approach is not widely known or understood by evolutionary biologists. In this review we aim to remedy this situation by outlining the methodology and then examining its strengths and weaknesses. We carry this out by posing and answering 20 key questions on Adaptive Dynamics. We conclude that Adaptive Dynamics provides a set of useful approximations for studying various evolutionary questions. However, as with any approximate method, conclusions based on Adaptive Dynamics are valid only under some restrictions that we discuss

    The Statistics of the Number of Minima in a Random Energy Landscape

    Full text link
    We consider random energy landscapes constructed from d-dimensional lattices or trees. The distribution of the number of local minima in such landscapes follows a large deviation principle and we derive the associated law exactly for dimension 1. Also of interest is the probability of the maximum possible number of minima; this probability scales exponentially with the number of sites. We calculate analytically the corresponding exponent for the Cayley tree and the two-leg ladder; for 2 to 5 dimensional hypercubic lattices, we compute the exponent numerically and compare to the Cayley tree case.Comment: 18 pages, 8 figures, added background on landscapes and reference

    Monte carlo simulations of parapatric speciation

    Full text link
    Parapatric speciation is studied using an individual--based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.Comment: submitted to Phys.Rev.

    Estimating the duration of speciation from phylogenies

    Get PDF
    Speciation is not instantaneous but takes time. The protracted birth-death diversification model incorporates this fact and predicts the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic branching times under this model was outlined (Lambert et al. ). Here, we implement this method and study using simulated phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that phylogenies often do not contain enough information to provide unbiased estimates of the speciation-initiation rate and the extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation model provide a promising way to estimate the duration of speciation.</p

    Target review: 20 questions on adaptive dynamics

    Get PDF
    • …
    corecore